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Abstract 

Statistical criteria of fairness, though controversial, bring attention to the 

multiobjective nature of many predictive modelling problems. In this paper, I 

consider how epistemic and non-epistemic values impact the design of machine 

learning algorithms that optimize for more than one normative goal. I focus on a 

major design choice between biased search strategies that directly incorporate 

priorities for various objectives into an optimization procedure, and unbiased 

search strategies that do not. I argue that both reliably generate Pareto optimal 

solutions such that various other values are relevant to making a rational choice 

between them.  
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1. Introduction 

Philosophers and computer scientists debate whether there exist statistical criteria of fairness that 

can be used to assess the fairness of a machine learning (ML) model’s predictions. In this paper, 

I bring attention to the additional values that are involved when these or other notions of fairness 

are integrated into an optimization procedure used to train an ML model. I focus on a major 

design choice in multiobjective optimization problems (MOOPs) between biased and unbiased 

search strategies, which are distinguished by whether they use priorities for the objectives to 

direct an optimization procedure. I argue that both reliably generate Pareto optimal (PO) 

solutions, but there are various additional, not purely epistemic, reasons to prefer one or the 

other. 

The paper will proceed as follows. In Section 2, I explain how my analysis diverges from 

existing philosophical work on algorithms and values, and I specify the sense in which I consider 

values to impact model design choices. In Section 3, I introduce MOOPs and strategies for 

solving them, and I motivate why it is important to understand fairness optimization as a MOOP. 

In Section 4, I argue that the methodological choice between biased and unbiased search 

strategies is unforced by the epistemic aim of finding Pareto optimal tradeoffs. In Section 5, I 

discuss what additional values are relevant to this choice. 

 

2. Values act as justificatory reasons for choices in optimization problems 

Philosophers and social scientists have brought critical attention to the multitude of ways that 

algorithms are biased, often leading to unfairness when algorithmic predictions inform decisions. 

In this work, I offer a novel philosophical reflection on how algorithms implement values by 

focusing on the choice of what optimization method to use when incorporating fairness notions 

into ML design. This goes beyond existing philosophical work that highlights the relationship 

between values and statistical performance metric(s) including tradeoffs between statistical 

criteria of fairness, and data-driven practices as a whole (e.g. Fazelpour and Danks 2021). While 

fairness criteria can be incorporated at various stages of ML model design, including before, 

during, or after an optimization algorithm is run to train an ML model, my purpose here is to 

compare approaches that incorporate fairness notions into optimization design. 

As my goal is to analyze what justifies particular design choices in optimization, I will 

focus on a specific type of relation between values and choices where values act as justificatory 

reasons for choices. This type of relation is distinguished by Ward (2021), who characterizes it 

as involving an appeal to values in rational arguments used to support a certain course of action. 

Using Ward’s taxonomy: I will not attempt to answer what values motivate ML designers to 

choose various optimization strategies, which would require a separate psychological and 

sociological analysis. I will also not consider how values act as causes or effects of design 

choices; for instance, what values make designers and decision makers (DMs) more likely to 
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formulate a decision as an ML problem or as a MOOP, or how a deployed ML model promotes 

certain social values and practices. Instead, I will focus on how values are (and should be) used 

as justificatory reasons in choices regarding the use of a particular optimization strategy. 

Notably, following Ward and others, my assessment focuses on pro tanto reasons for choices, 

rather than on what reasons fully justify a choice. 

 

3. Optimizing for fairness in ML is a multiobjective problem 

Tradeoffs arise in predictive modelling that aims to be fair in several ways, indicating that the 

problem of implementing almost any fairness notion in ML optimization is multiobjective. First, 

predictive modelling involves a cost versus benefit analysis. For example, solving a classification 

problem involves a search for a model that makes an optimal tradeoff between the costs and 

benefits of each type of predictive result (e.g. positive or negative classifications, whether true or 

false). In supervised ML, these predictive preferences are typically chosen by the DM and 

encoded as a single performance metric that may be implemented as the objective function to 

optimize or used to evaluate the model’s final performance. Either way, during the training 

phase, the optimization algorithm varies the model’s parameters to minimize an objective 

function (also called the “loss” function) that expresses the loss of the costs relative to the 

benefits when predicting the target variable for the population represented in the training dataset. 

The final trained model generates individual predictions based on an optimal risk score that 

represents the frequency of the target outcome given a particular set of features (in a Bayesian 

sense, it represents the posterior probability of the outcome given the observed features; Barocas 

et al. 2023, 48).  

Nonetheless, risk scores that are optimal for the whole population may not correspond to 

what is optimal for various subgroups, such that striving for fairness to groups involves tradeoffs 

with overall predictive performance. Barocas et al. (2023) bring attention to how in general, we 

should not expect the costs and benefits of predictions to be equally shared across groups if the 

predicted target variable is not statistically independent of group membership. Here, attempts to 

equalize various statistical criteria of fairness across groups generally decrease overall predictive 

performance. The only exceptions are fairness criteria based on the notion of sufficiency, which 

require that the risk score is well calibrated to the predicted outcomes within groups (Barocas et 

al. 2023, 62). Yet even sufficiency trades off with population accuracy if models are “blinded” to 

group membership (e.g. for legal reasons) and the relationship between predictive features and 

outcomes differs across groups (Corbett-Davies et al. 2023, 16-17).  

Meanwhile, different statistical notions of what constitutes fairness to groups also involve 

inherent tradeoffs such that employing more than one criterion incorporates conflicting goals into 

a predictive modelling problem. Barocas et al. (2023) categorize statistical non-discrimination 

criteria into three types based the notions of sufficiency, independence, and separation. 

Independence requires that a risk score is independent of a sensitive attribute such that the 
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acceptance rate of a classifier is equal across groups. On the other hand, separation requires that 

a risk score is independent of a sensitive attribute within each stratum of equal claim, implying 

error rate parity. Barocas et al. prove that formal tradeoffs exist between each family of criteria 

when the target variable is not independent of group membership (except for degenerate 

solutions). Thus, there is a three-way tradeoff between the notions of sufficiency, independence, 

and separation such that if one is satisfied, the others cannot be (see also Chouldechova 2017, 

Kleinberg et al. 2016, Miconi 2017.) 

Last, implementing even one statistical fairness criterion in a predictive modelling 

problem can benefit one demographic group while imposing significant costs for other subgroups 

of the population. Kearns et al. (2018) call this “fairness gerrymandering,” where an appearance 

of equity with respect to one subgroup comes at the expense of unfairness towards another. Thus, 

the challenge of achieving fairness with respect to multiple subgroups increases the number of 

conflicting goals in a predictive modelling problem.1 

Philosophers and computer scientists respond to these inherent tradeoffs with the 

following four main claims. (1) Only one statistical criterion is normatively relevant (e.g. 

Separation: Hellman 2020, Grant 2023. Calibration: Hedden 2021, Corbett-Davies et al. 2023). 

(2) Necessary statistical criteria of fairness should be assessed on a case-by-case basis, especially 

since it is possible to satisfy some measures from more than one family at the expense of others 

in those same categories (Miconi 2017). (3) The criteria could be relaxed, substantially altered to 

be compatible (Beigang 2023), or implemented as group-specific aims rather than as a 

summarized statistic (eg. Group DRO: Sagawa et al. 2020. Minimax Pareto fairness: Martinez et 

al. 2020). (4) The criteria should be abandoned in favour of alternative debiasing or fairness 

optimization strategies such as striving towards a perfect predictor (Miconi 2017 points out this 

option), implicit unfairness mitigation methods (see Wan et al. 2023), or direct cost–benefit 

analysis using real-world quantities (Corbett-Davies et al. 2023).2  

The diversity of these responses raises the question: what might a focus on multiobjective 

optimization add to this debate? I propose that analyzing the values that act as justificatory 

reasons for choices regarding how to optimize for multiple aims is part of the normative work 

required for establishing the legitimacy of almost any approach proposed above, since they 

involve design choices that may or may not lead to Pareto optimality (defined below), and that 

might imply more or less precision in how well the solutions correspond to a DM’s preferences. 

(The main exception is for a perfect predictor; Miconi 2017). For example, if only one statistical 

criterion is required for fairness in general or in a particular case, then it likely involves a 

tradeoff with population performance (even for sufficiency, if a “blind” model is used). The 

advantage of recognizing the multiobjective nature of these optimization problems is that design 

 
1 Designers have proposed clever solutions to this problem, where the tradeoffs between subgroups are either 

considered explicitly for multiple sensitive attributes (Zafar et al. 2017) or “blindly” for any subgroups of sufficient 

size (Martinez 2021, Kearns et al. 2018). 
2 I have outlined these responses with insight from Miconi 2017, Hedden 2021, and Beigang 2023. 
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choices may be evaluated for whether they generate a PO solution: one that offers the best 

possible population performance for the required fairness (e.g. Zafar et al. 2017 consider these 

and contrasting cases of “business necessity”). Alternatively, one or more statistical criteria of 

fairness might be relaxed in order to find an intermediate compromise with population accuracy 

or other fairness objectives. In these cases, treating the problem as a multiobjective one enables 

designers to plan for a PO tradeoff solution: one without any unnecessary relaxation. Even 

Beigang’s (2023) approach, which offers alternative, compatible, criteria of algorithmic fairness, 

still does not reconcile the multiple goals of distributive justice that might arise from algorithmic 

decision making. Meanwhile, optimizing group-specific aims (without summary statistics) is also 

an inherently multiobjective problem, where Pareto optimality often matters for doing no 

unnecessary harm (Martinez et al. 2020 raise this point) but is not guaranteed by some 

approaches (e.g. group DRO). 

In a MOOP, the main aim is to find one or more PO solutions that represent the best 

possible tradeoffs between the objectives. A MOOP can be formulated as a minimization 

problem with m objectives (𝑚 ≥ 2) that map decision variables 𝑥 ∈ 𝑋 in decision space X into 

the objective space, defined in ℝ𝑚:  

min     𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … 𝑓𝑚(𝑥)) 

A solution is PO if and only if it is not possible to improve in any one objective without 

degrading in at least one other. The notion of dominance distinguishes PO solutions from non-

PO solutions: a solution x(1) dominates x(2) (equivalently, x(1) is nondominated by x(2)) if and only 

if two conditions hold (following Deb et al.’s formalism; 2016, 151): 

1. x(1) is no worse than x(2) in all objectives (𝑓𝑗 (𝐱(1))  ⋫  𝑓𝑗 (𝐱(2)) for all j=1, …, m) 

2. x(1) is strictly better than x(2) in at least one objective (𝑓𝑗̅ (𝐱(1))  ⊲  𝑓𝑗̅ (𝐱(2))) for at least  

one 𝑗 ̅∈ {1, …, m}. 

The PO set is comprised of the nondominated solutions attained when the entire feasible region 

of the decision space is searched (Deb et al., 153). In most MOOPs, feasible solutions are 

defined by various constraints, including limits on the range of each parameter value that is 

searched. This means that in the objective function space, PO solutions mark the boundary 

between the feasible and infeasible regions (see Fig. 1).  
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Figure 1: Tradeoff solutions in objective function space when minimizing some 

notion of unfairness (F2) and population loss (F1). 

 

Optimization strategies that implement multiple objective functions can be characterized 

according to two major design choices. The first choice depends on when the DM specifies 

preferences for how to trade off the multiple objectives. In a priori approaches, the DM decides 

before the stage of optimization and these preferences are used to obtain a single PO solution. In 

contrast, a posteriori approaches present the DM with multiple PO solutions to choose from 

representing different tradeoffs, after the stage of optimization.3 Typically, a posteriori 

approaches aim to find a large portion of the entire PO set (Deb et al., 148). I will focus this 

paper on a second major design choice, which concerns whether to use a search strategy that is 

guided toward a particular tradeoff solution. I will use the term “biased search” for approaches 

that aim to find the single PO solution that corresponds to a certain set of priorities for the 

multiple objectives. They can be used in either an a priori or a posteriori way, depending on 

whether the priorities are iteratively varied to map the Pareto front (PF). On the other hand, I will 

call search strategies that do not assign priorities to the multiple objectives as an optimization 

proceeds “unbiased” (i.e. in this limited sense; see Table 1). 

 

 

 
3 Although some “interactive” approaches do not fit neatly within this distinction (see Deb et al. 2016, 13).  
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Table 1: Multiobjective fairness optimization strategies that generate Pareto optimal solutions  

  A Priori A Posteriori 
Biased Search • Linear scalarization 

(Kamishima et al. 2012) 

• Constrained optimization 

(Zafar et al. 2017) 

• Rawlsian minimax Pareto 

fairness (Martinez et al. 

2020) 

• Epsilon-constraint (Liu & 

Vicente’s 2022 extension of 

Zafar et al. 2017) 

• Chebychev scalarization 

(Wei & Niethammer 2022) 

Unbiased Search • Constrained multigradient 

descent followed by 

automated selection of the 

final solution (Padh et al. 

2021)  

• Stochastic multigradient 

descent (Liu & Vicente 

2022) 

4. Choosing between biased and unbiased search strategies is an unforced methodological 

choice 

Here I argue that biased and unbiased search strategies for multiobjective optimization both 

reliably generate PO solutions, even for ML problems that indirectly optimize the goals. This 

implies that choosing between these strategies is an “unforced” methodological choice 

(Winsberg 2012).  

Biased search strategies often make use of optimization engines that offer guarantees of 

convergence (for convex functions), reducing the multiple objectives into a single function while 

incorporating priority information (e.g. as constraints on a primary objective, Zafar et al. 2017; 

or as weights for a scalarizing function, Kamishima 2012). For example, many deterministic 

algorithms are guaranteed to converge on the global optimal solution to a convex objective 

function (where every local minimum is a global minimum, e.g. quadratic programming, 

gradient-descent, Newton’s method). Alternatively, stochastic optimization engines also reliably 

converge on global optima (of either convex or nonconvex functions). To illustrate, appropriately 

sized stochastic variation of parameter values can prevent premature convergence to local but not 

global optima. 

While unbiased search strategies optimize multiple objectives simultaneously rather than 

reducing them, they also reliably generate PO solutions. Unbiased strategies first attempt to map 

the PF and then incorporate a DM’s preference information (specified either a priori or a 

posteriori) to select a PO solution. In ML, unbiased methods map the PF by maintaining a list of 

nondominated solutions in various ways; for example, by comparing the list to new solutions 

generated at each epoch (Padh et al. 2021) or to solutions generated by multiple runs of the 

algorithm with randomized initial starting points (Liu & Vicente 2022). Multigradient descent 

algorithms follow a vector of common descent (that represents a convex combination of the 

objective function gradients) until it vanishes. The resulting “Pareto stationary” solutions can be 
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compared in terms of dominance. In general, repeatedly vetting solutions by dominance 

improves the quality of the PF. 

Nonetheless, I submit a few remarks on the reliability of ML-specific multiobjective 

optimization, as ML uses an “indirect” form of optimization (Goodfellow 2016, 268). In 

supervised ML, the ultimate performance of a model is judged by evaluating the objective 

function(s) on a specially reserved subset of the data (called the “test set”) that is not used during 

optimization. Still, granting that the same performance measure(s) (or suitable approximations) 

are used for both subsets, and that standard ML assumptions hold (the training and test sets are 

independent and identically distributed), biased or unbiased search strategies also reliably 

generate PO solutions in ML.4 

Empirical evidence also supports my claim. Liu and Vicente (2022) develop an unbiased 

search method for multiobjective fairness optimization based on stochastic multi-gradient 

descent (with the goal of using it in an a posteriori way). They compare their method to a biased 

search approach (Zafar et al.’s constraint-based optimization; 2017) on two convex optimization 

problems. The goals are to make accurate predictions of salary and to minimize disparate impact 

with respect to either gender or race (they use the Adult Income dataset; Kohavi 1996). For 

accuracy, they use a logistic regression function and for disparate impact they use a convex 

approximation of Calders & Verwer’s (CV) score based on the decision boundary covariance 

(2010). The comparison requires iterating over the constraint parameter in Zafar et al.’s method 

and storing nondominated solutions in order to obtain a full PF with the biased search strategy 

(i.e. adapting it to an epsilon-constraint method: see Haimes, 1971). Liu and Vicente’s (2022) 

results show that both methods generate high-quality PFs: when optimizing for minimal 

disparate impact with respect to gender, the PF-SMG algorithm dominates the EPS-fair 

algorithm in some regions of the tradeoff surface (their Figure 1a, 521). However, when 

optimizing for minimal disparate impact with respect to race, the EPS-fair algorithm dominates 

in some regions (Figure 2a, 522). Notably, the DM’s preferences (specified either a priori or a 

posteriori) might require targeting a PO solution from any region of these tradeoff surfaces, 

where either method might dominate. Thus, neither approach offers an overall advantage in 

terms of Pareto dominance for these tests.5 

This means that values are relevant to normatively assessing the choice between biased 

and unbiased search strategies for finding PO solutions. Particularly, in the sense articulated by 

 
4 But see Molnar and Freiesleben (2024) for an overview of strategies to improve the reliability of supervised ML 

models.  
5 Liu and Vicente (2022) also make a wider comparison of how the methods perform on convex problems using 40 

datasets (522–523). They note the biased method slightly outperforms the unbiased one according to a scalar metric 

that measures Pareto dominance, but they observe that the PFs are quite close. Meanwhile, they are not able to use 

the biased method to produce PFs of sufficient quality for the comparison on nonconvex problems (524). Thus, 

perhaps conditioning on the problem type (convex or nonconvex) might differentiate between the epistemic 

advantages of biased and unbiased search strategies in attaining Pareto optimality. However, this would require a 

much wider analysis as additional (and sometimes orthogonal) design choices also contribute to these advantages 

(e.g. incorporating stochasticity).  
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Ward (2021), values might act as non-epistemic justificatory reasons. Winsberg (2012) brings 

attention to how non-epistemic values impact what he calls “unforced methodological choices” 

in climate modelling, where one option is not “objectively” better than another, but each presents 

a benefit for a different set of preferences such as preferences for inductive risks (130). While he 

argues it is not possible to isolate the values that have impacted the history of climate science 

since they hide in all its “nooks and crannies,” and current climate models also rely on past 

modelling choices, methods for fairness optimization are not yet so “generatively entrenched” 

(132). Therefore, I now suggest several values that are relevant to the choice between biased and 

unbiased search strategies. 

5.  Values in multiobjective optimization 

There are several differences between biased and unbiased search procedures beyond their ability 

to generate PO solutions that might act as justificatory reasons for choosing between them. Here 

I discuss three: precision in selecting a PO solution that corresponds to a certain set of 

preferences, computational efficiency, and dynamic adaptability. While not all of these appear to 

be purely epistemic, I do not attempt to classify them as epistemic or non-epistemic, or to regress 

to the problem of identifying values that act as reasons for choosing between them. 

First, perhaps counterintuitively, unbiased methods appear to have an overall advantage 

in offering more precise control over solution preferences. One reason for this is that it is 

somewhat difficult to achieve a dense and well-spread PF with a biased method. For weight-

based methods, an evenly distributed set of weights does not necessarily generate an even spread 

of PO solutions (Deb et al. 2016, 160). Meanwhile, constraint-based methods require advanced 

knowledge of the PF to achieve a sufficient resolution, including what upper bounds to use for 

the constraints and what step size to vary them with. Liu & Vicente’s (2022) results demonstrate 

this difficulty: their unbiased method produces a more dense and well-spread PF compared to the 

epsilon-constraint method (522-523). Also, the overall advantage of unbiased methods in 

generating higher resolution PFs applies even when preferences are specified a priori. For 

example, if constraints are set too narrow, no feasible solution will be obtained, and if they are 

broad enough to admit more than one PO solution, a highly resolved PF affords better fine-

grained solution control. In addition, while it is possible in principle with some biased methods 

to discover nonconvex regions of a PF (e.g. epsilon-constraint, Chebyshev scalarization), the 

challenge of tuning the weights or step-size of the constraints means that it is more difficult than 

with unbiased methods. For this reason, designers of biased methods often choose to use convex 

approximations of the objective functions (e.g. Zafar et al. 2017).  

Second, biased and unbiased methods differ in the efficiency at which they generate one or 

more PO solutions. Since biased methods execute single objective optimization routines, they are 

most efficient for a priori problems that aim to generate a single PO solution. However, they require 

iterative optimizations for solving a posteriori problems, and so they may be inefficient for 

problems with many objectives (such as fairness optimization, see Section 3). Also, if the objective 

functions are nonconvex, biased methods require iterative exploration of the PF to discover any 
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nonconvex regions, which also makes them less efficient overall. On the other hand, while 

unbiased methods might be slightly less efficient at generating single PO solutions, they 

outperform biased methods in efficiently mapping the PF (Liu & Vicente also measure this 

explicitly; 2022). Thus, different measures of computational efficiency are relevant to choosing 

between biased and unbiased methods.  

Third, unbiased methods have the advantage that the PF may be dynamically adapted as 

new data becomes available. Liu & Vicente (2022) highlight that this is an important feature of 

their design, and they present results that simulate a streaming scenario: the PFs they compute on 

successive batches of the training data adaptively converge to the final PF computed for the 

whole training dataset (527, 535). Optimizing the multiple objectives simultaneously and 

stochastically sampling the data makes this efficient; it does not require restarting a series of 

biased searches to compute a new PF. Instead, new solutions computed with fresh data can be 

directly compared to previous solutions in terms of dominance. The ability to handle streaming 

data is important because in realistic socioeconomic systems, PFs evolve dynamically.  

In sum, while neither biased nor unbiased search methods offer an overall advantage in 

terms of Pareto dominance, biased searches might be preferred for efficiently computing a single 

PO solution, and unbiased methods for precise control over tradeoff preferences, efficient PF 

mapping, and dynamic PO prediction. 

 

6. Conclusion 

I emphasized that since in general, implementing fairness notions in ML optimization is a 

multiobjective problem, it is important to normatively assess the design choices involved in 

various methods that incorporate more than one objective in optimization. I argued that choosing 

between biased and unbiased search strategies is not forced by the epistemic aim of finding 

nondominated, PO solutions. Instead, values such as computational efficiency and preferences 

regarding various types of predictive risks (precision in tradeoff control, robustness to 

distribution shifts) impact this choice.  

 

6.1. Future Work 

My analysis is relevant to future ethical reflection on the design of fair algorithms. For instance, 

work that assesses the normative significance and priority that should be given to various values 

such as the ones I have highlighted here. In particular, the importance of obtaining Pareto 

optimality must be ethically grounded, and here I briefly highlight a couple of possible 

approaches stemming from Grant et al.’s (2025) proposal regarding duties of evidential 

consideration owed to decision subjects. First, the accuracy of a predictive model relative to 

other available predictive models is a morally salient feature for showing due consideration to 

the substantive claims of decision subjects (11). Thus, if an optimization method that does not 

reliably generate PO solutions is chosen (e.g. group DRO; Sagawa et al. 2020), a decision 

subject may not have been shown due consideration since better methods exist for safeguarding 



Author version—accepted for PSA 2024 contributed paper proceedings 
 

11 

against unnecessary loss of accuracy (i.e. loss that is not necessary for gain in some other 

normative goal). Second, optimizing for population accuracy might also raise duties to decision 

subjects to safeguard against unnecessary differential accuracy between groups or unnecessary 

loss of other kinds of fairness. These duties would safeguard against insensitivity to the 

multidimensional nature of the salient moral claims, rather than establish general priorities for 

various normative goals. 

Also, the choice between a priori and a posteriori approaches should be normatively 

assessed. If a DM has clear requirements for tradeoffs, it seems to justify the use of an a priori 

approach. However, if a DM is unable to precisely specify preferences, a posteriori approaches 

provide useful information for making ethical judgments: they can be used to identify “knee” 

solutions, where the curve of the PF changes rapidly between two objectives such that a small 

improvement in one objective causes a large degradation in at least one other. Branke et al. 

(2004) argue that in the absence of preference information, knee solutions are most likely to be 

interesting to a DM because other nearby solutions involve a large loss in at least one objective 

(i.e. knee solutions are locally non-extreme).  

  



Author version—accepted for PSA 2024 contributed paper proceedings 
 

12 

References 

 

Barocas, Solon, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning: 

Limitations and Opportunities. Cambridge, MA: MIT Press, 2023.  

Beigang, Fabian. “Reconciling Algorithmic Fairness Criteria.” Philosophy & Public Affairs 51, 

no. 2 (April 2023): 166–90. https://doi.org/10.1111/papa.12233. 

Branke, Jürgen, Kalyanmoy Deb, Henning Dierolf, and Matthias Osswald. “Finding Knees in 

Multi-Objective Optimization.” In Parallel Problem Solving from Nature - PPSN VIII, 

edited by Xin Yao, Edmund K. Burke, José A. Lozano, Jim Smith, Juan Julián Merelo-

Guervós, John A. Bullinaria, Jonathan E. Rowe, Peter Tiňo, Ata Kabán, and Hans-Paul 

Schwefel, 722–31. Berlin, Heidelberg: Springer, 2004. https://doi.org/10.1007/978-3-

540-30217-9_73. 

Calders, Toon, and Sicco Verwer. “Three Naive Bayes Approaches for Discrimination-Free 

Classification.” Data Mining and Knowledge Discovery 21, no. 2 (September 2010): 

277–92. https://doi.org/10.1007/s10618-010-0190-x. 

Chouldechova, Alexandra. “Fair Prediction with Disparate Impact: A Study of Bias in 

Recidivism Prediction Instruments.” arXiv, February 28, 2017. 

https://doi.org/10.1089/big.2016.0047. 

Corbett-Davies, Sam, Johann D. Gaebler, Hamed Nilforoshan, Ravi Shroff, and Sharad Goel. 

“The Measure and Mismeasure of Fairness.” arXiv, August 14, 2023. 

https://doi.org/10.48550/arXiv.1808.00023. 

Deb, Kalyanmoy, Karthik Sindhya, and Jussi Hakanen. “Multi-Objective Optimization.” In 

Decision Sciences. 145-183: CRC Press, 2016. 

Fazelpour, Sina, and David Danks. “Algorithmic Bias: Senses, Sources, Solutions.” Philosophy 

Compass 16, no. 8 (June 12, 2021): e12760. https://doi.org/10.1111/phc3.12760. 

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. 

Grant, David Gray. “Equalized Odds Is a Requirement of Algorithmic Fairness.” Synthese 201, 

no. 3 (March 8, 2023): 101. https://doi.org/10.1007/s11229-023-04054-0. 

Grant, David Gray, Jeff Behrends, and John Basl. “What We Owe to Decision-Subjects: Beyond 

Transparency and Explanation in Automated Decision-Making.” Philosophical Studies 

182, no. 1 (January 1, 2025): 55–85. https://doi.org/10.1007/s11098-023-02013-6. 

Haimes, YV. “On a Bicriterion Formulation of the Problems of Integrated System Identification 

and System Optimization.” IEEE Transactions on Systems, Man, and Cybernetics SMC-

1, no. 3 (July 1971): 296–97. https://doi.org/10.1109/TSMC.1971.4308298. 

Hedden, Brian. “On Statistical Criteria of Algorithmic Fairness.” Philosophy & Public Affairs 

49, no. 2 (March 1, 2021): 209–31. https://doi.org/10.1111/papa.12189. 

Hellman, Deborah. “Measuring Algorithmic Fairness.” Virginia Law Review 106, no. 4 (June 

2020): 811–66. https://www.jstor.org/stable/27074708. 

https://doi.org/10.1111/papa.12233
https://doi.org/10.1007/978-3-540-30217-9_73
https://doi.org/10.1007/978-3-540-30217-9_73
https://doi.org/10.1007/s10618-010-0190-x
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.48550/arXiv.1808.00023
https://doi.org/10.1111/phc3.12760
https://doi.org/10.1007/s11229-023-04054-0
https://doi.org/10.1007/s11098-023-02013-6
https://doi.org/10.1109/TSMC.1971.4308298
https://doi.org/10.1111/papa.12189
https://www.jstor.org/stable/27074708


Author version—accepted for PSA 2024 contributed paper proceedings 
 

13 

Kamishima, Toshihiro, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. “Fairness-Aware 

Classifier with Prejudice Remover Regularizer.” In Machine Learning and Knowledge 

Discovery in Databases, edited by Peter A. Flach, Tijl De Bie, and Nello Cristianini, 35–

50. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012. 

https://doi.org/10.1007/978-3-642-33486-3_3. 

Kearns, Michael, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. “Preventing Fairness 

Gerrymandering: Auditing and Learning for Subgroup Fairness.” In Proceedings of the 

35th International Conference on Machine Learning, 2564–72. PMLR, 2018. 

https://proceedings.mlr.press/v80/kearns18a.html. 

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. “Inherent Trade-Offs in the Fair 

Determination of Risk Scores.” arXiv, November 17, 2016. 

https://doi.org/10.48550/arXiv.1609.05807. 

Kohavi, Ronny, and Barry Becker. “Adult Income Dataset (UCI Machine Learning Repository),” 

1996. https://archive.ics.uci.edu/ml/datasets/adult. 

Liu, Suyun, and Luis Nunes Vicente. “Accuracy and Fairness Trade-Offs in Machine Learning: 

A Stochastic Multi-Objective Approach.” Computational Management Science 19, no. 3 

(July 1, 2022): 513–37. https://doi.org/10.1007/s10287-022-00425-z. 

Martinez, Natalia, Martin Bertran, and Guillermo Sapiro. “Minimax Pareto Fairness: A Multi 

Objective Perspective.” In Proceedings of the 37th International Conference on Machine 

Learning, 6755–64. PMLR, 2020. https://proceedings.mlr.press/v119/martinez20a.html. 

Martinez, Natalia L., Martin A. Bertran, Afroditi Papadaki, Miguel Rodrigues, and Guillermo 

Sapiro. “Blind Pareto Fairness and Subgroup Robustness.” In Proceedings of the 38th 

International Conference on Machine Learning, 7492–7501. PMLR, 2021. 

https://proceedings.mlr.press/v139/martinez21a.html. 

Miconi, Thomas. “The Impossibility of ‘Fairness’: A Generalized Impossibility Result for 

Decisions.” arXiv, September 11, 2017. https://doi.org/10.48550/arXiv.1707.01195. 

Molnar, Christoph, and Timo Freiesleben. Supervised Machine Learning for Science: How to 

Stop Worrying and Love Your Black Box, 2024. https://ml-science-book.com/. 

Padh, Kirtan, Diego Antognini, Emma Lejal-Glaude, Boi Faltings, and Claudiu Musat. 

“Addressing Fairness in Classification with a Model-Agnostic Multi-Objective 

Algorithm.” In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial 

Intelligence, 600–609. PMLR, 2021. https://proceedings.mlr.press/v161/padh21a.html. 

Sagawa, Shiori, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. “Distributionally 

Robust Neural Networks for Group Shifts: On the Importance of Regularization for 

Worst-Case Generalization.” arXiv, April 2, 2020. 

https://doi.org/10.48550/arXiv.1911.08731. 

Wan, Mingyang, Daochen Zha, Ninghao Liu, and Na Zou. “In-Processing Modeling Techniques 

for Machine Learning Fairness: A Survey.” ACM Transactions on Knowledge Discovery 

from Data 17, no. 3 (March 20, 2023): 1–27. https://doi.org/10.1145/3551390. 

https://doi.org/10.1007/978-3-642-33486-3_3
https://proceedings.mlr.press/v80/kearns18a.html
https://doi.org/10.48550/arXiv.1609.05807
https://archive.ics.uci.edu/ml/datasets/adult
https://doi.org/10.1007/s10287-022-00425-z
https://proceedings.mlr.press/v119/martinez20a.html
https://proceedings.mlr.press/v139/martinez21a.html
https://doi.org/10.48550/arXiv.1707.01195
https://ml-science-book.com/
https://proceedings.mlr.press/v161/padh21a.html
https://doi.org/10.48550/arXiv.1911.08731
https://doi.org/10.1145/3551390


Author version—accepted for PSA 2024 contributed paper proceedings 
 

14 

Ward, Zina B. “On Value-Laden Science.” Studies in History and Philosophy of Science Part A 

85 (February 2021): 54–62. https://doi.org/10.1016/j.shpsa.2020.09.006. 

Wei, Susan, and Marc Niethammer. “The Fairness-Accuracy Pareto Front.” Statistical Analysis 

and Data Mining: An ASA Data Science Journal 15, no. 3 (June 2022): 287–302. 

https://doi.org/10.1002/sam.11560. 

Winsberg, Eric. “Values and Uncertainties in the Predictions of Global Climate Models.” 

Kennedy Institute of Ethics Journal 22, no. 2 (June 2012): 111–37. 

https://doi.org/10.1353/ken.2012.0008. 

Zafar, Muhammad Bilal, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. 

“Fairness Constraints: Mechanisms for Fair Classification.” arXiv, March 23, 2017. 

https://doi.org/10.48550/arXiv.1507.05259. 

 

 

Funding 

Thanks to support from the Northeastern AIDE Summer Training Program 2023 and NSF Award 

# 2147220. This paper also draws on research supported by the Social Sciences and Humanities 

Research Council of Canada. Ce article s’appuie sur des recherches financées par le Conseil de 

recherches en sciences humaines du Canada. 

 

 

Acknowledgements 

Thanks to helpful comments from participants at the Northeastern AIDE Summer Training 

Program 2023. I would also like to thank Chris Smeenk and Kathleen A. Creel for helpful 

discussions. 

https://doi.org/10.1016/j.shpsa.2020.09.006
https://doi.org/10.1002/sam.11560
https://doi.org/10.1353/ken.2012.0008
https://doi.org/10.48550/arXiv.1507.05259

	1. Introduction
	2. Values act as justificatory reasons for choices in optimization problems
	3. Optimizing for fairness in ML is a multiobjective problem
	4. Choosing between biased and unbiased search strategies is an unforced methodological choice
	5.  Values in multiobjective optimization
	6. Conclusion

